
Eur. Phys. J. C 2, 151–158 (1998) THE EUROPEAN
PHYSICAL JOURNAL C
c© Springer-Verlag 1998

O(α2
s) corrections to top quark production at e+e− colliders?

R. Harlander1,a, M. Steinhauser2

1 Institut für Theoretische Teilchenphysik, Universität Karlsruhe, D-76128 Karlsruhe, Germany
2 Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, D-80805 Munich, Germany

Received: 20 October 1997

Abstract. In this article we evaluate mass corrections up to O((m2/q2)6) to the three-loop polarization
function induced by an axial-vector current. Special emphasis is put on the evaluation of the singlet
diagram which is absent in the vector case. As a physical application O(α2

s) corrections to the production
of top quarks at future e+e− colliders are considered. It is demonstrated that for center of mass energies√

s ∼> 500 GeV the inclusion of the first seven terms into the cross section leads to a reliable description.

In the total cross section σ(e+e− → hadrons) corrections
arising from the finite mass, m, of the produced quarks
may often be neglected. Concerning precision measure-
ments around the Z resonance first order mass correc-
tions, known up to O(α3

s) [1,2], are usually adequate.
However, having in mind top quark production at future
colliders like the NLC with a center of mass energy of√
s = 500 GeV higher order terms in m2/s may become

important. The velocity of the produced particles is then
v ≈ 0.7 which means that on one side threshold effects
are not important and on the other side we are not in the
region of very high energies.

In [3] the contribution of the photon to the production
of top quarks was considered. In this article also the ex-
change of the Z boson is included. Hence, in a first step re-
sults for the axial-vector polarization function up to O(α2

s)
are presented. The imaginary part in combination with
the recently evaluated rate for the vector case [4] directly
leads to the cross section σ(e+e− → tt̄+X) mediated by
a virtual Z boson. The O(αs) corrections to this process
were considered in [5].

To be more precise let us define the axial-vector current
correlator as:

(−q2gµν + qµqν
)
Πa(q2) + qµqν Π

a
L(q2)

= i

∫
dx eiqx〈0|Tja

µ(x)ja
ν (0)|0〉 (1)

? The complete postscript file of this preprint, including fig-
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karlsruhe.de (129.13.102.139) as /ttp97-40/ttp97-40.ps or via
www at
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with ja
µ = ψ̄γµγ5ψ. In the following we will only present

results for Πa(q2)1. It is convenient to write

Πa(q2) = Π(0),a(q2) +
αs(µ2)
π

CFΠ
(1),a(q2)

+
(
αs(µ2)
π

)2

Π(2),a(q2) + . . . ,

Π(2),a = C2
FΠ

(2),a
A + CACFΠ

(2),a
NA + CFTnlΠ

(2),a
l

+CFTΠ
(2),a
F , (2)

with the SU(3) colour factors CF = 4/3, CA = 3 and
T = 1/2.Π(2),a

A is the abelian contribution already present
in QED and Π(2),a

NA originates from the non-abelian struc-
ture specific for QCD. The polarization functions contain-
ing a second massless or massive quark loop are denoted
by Π

(2),a
l and Π

(2),a
F , respectively. Πa represents the so-

called non-singlet part. However, for external axial-vector
currents already at O(α2

s) there exists also a singlet or
double-triangle contribution:

Πa
S(q2) =

(
αs(µ2)
π

)2

CFT Π
(2),a
S (q2). (3)

As Πa
S depends on the properties of both members of the

fermion doublet we will from now on specify to the top-
bottom case. The generalization to other quark flavours is
obvious. For this contribution it is convenient to replace
the current ja

µ in (1) by t̄γµγ5t − b̄γµγ5b because in this
combination the axial anomaly cancels. In Fig. 1 the rel-
evant diagrams are depicted.

1 The longitudinal part, Πa
L(q2), of the non-singlet contribu-

tion, e.g., is via the axial Ward identity directly connected to
the pseudo-scalar polarization function Πp(q2), for which the
high energy expansion was considered in [6]
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Fig. 1. Diagrams contributing to Πa
S . In the triangle loops

either a top or bottom quark may be present

Similar relations as in (2) and (3) also hold for Ra(s)
and Ra

S(s), respectively, defined through

Ra
(S)(s) = 12π ImΠa

(S)(q
2 = s+ iε), (4)

so that the cross section for the inclusive production of
top quarks may be written as

Rt(s) =
σ(e+e− → tt̄+X)

σpt

= (v2
e + a2

e)a
2
t

(
s

s−M2
Z

)2 (
Ra(s) +Ra

S(s)

−
(αs

π

)2
CFTR

(2),a
Sb (s)

)

+

[
Q2

eQ
2
t + 2QeveQtvt

s

s−M2
Z

+(v2
e + a2

e)v
2
t

(
s

s−M2
Z

)2
]
Rv(s), (5)

with σpt = 4πα2/3s, vf = (If
3 − 2Qfs

2
θ)/(2sθcθ), af =

If
3 /(2sθcθ), Qe = −1, Qt = 2/3, Ie

3 = −1/2 and It
3 =

1/2. Furthermore we have c2θ = 1 − s2θ with sθ being the
sine of the weak mixing angle. Rv(s) is given in [4] and
both Ra(s) and Ra

S(s) will be presented below. R(2),a
Sb is

the contribution from cuts of the singlet diagram that do
not involve top quarks. Non-singlet contributions with the
photon or Z boson coupling to a light quark flavour and
the top quarks produced via gluon splitting [7] will be
neglected as their numerical values are tiny [3].

The computation of Πa naturally splits into two parts:
Firstly into the non-singlet contribution where the anti-
commuting definition of γ5 may be used. Here the calcula-
tion of the diagrams is in close analogy to the vector case.
Hence we refer for details to [4].

The second part, the singlet contribution Πa
S , is con-

nected with the axial anomaly and is not present in Πv.
Let us briefly describe our treatment of these diagrams.
Actually three graphs have to be considered, namely the
cases when two top quarks, one top and one bottom quark
or two bottom quarks are running in the triangle loops.
One may argue that the last combination only contributes
to the cross section into bottom quarks which is not the
process under consideration. However, only the proper
combination of all three parts guarantees the cancellation
of the anomaly. From the final result the cuts arising from
bottom quarks have to be subtracted, of course.

For the evaluation of Π(2),a
S naive γ5 fails to work. We

follow the treatment introduced in [8] and formalized in

[9] and replace both axial-vector vertices according to [10]

γµγ5 → i

3!
εµλρσγ

[λρσ], (6)

where γ[λρσ] is the antisymmetric combination of three
γ matrices which can be written as γ[λρσ] = (γλγργσ −
γσγργλ)/2. In a first step the ε-tensors are put aside and
the new object with six external indices, Π [λρσ]

[λ′ρ′σ′], defined
through

Πµν =
(
i

3!

)2

εµλρσ εν
λ′ρ′σ′

Π
[νρσ]
[ν′ρ′σ′], (7)

is treated until the momentum integration and renormal-
ization is done and a finite quantity is available [11]. Then
the contraction with the ε-tensors is performed. It is pos-
sible to show that the contribution from the singlet dia-
grams may be computed from the relation [12]

Πa
S(q2) = −

qσq
σ′
Π

[λρσ]
[λρσ′]

6(q2)2
, (8)

which means that we can treat the scalar quantity
qσq

σ′
Π

[νρσ]
[νρσ′] in complete analogy to the non-singlet dia-

grams. We should mention that a finite renormalization
of the singlet axial-vector current [13] has not to be per-
formed in the order considered in this paper.

Using the large momentum procedure the first seven
terms in the m2/q2-expansion of Πa(q2) have been evalu-
ated. We refrain from listing the results separated into
the contributions from the different colour factors and
present the results for the proper sum keeping only nl, the
number of light (massless) quarks, as arbitrary parameter
(lqm ≡ ln(−q2/m2

t ), lqµ ≡ ln(−q2/µ2)):

Π̄(0),a =
3

16π2

{
20
9

− 4
3
lqµ +

m2
t

q2
(−8 + 8 lqµ)

+
(
m2

t

q2

)2

(−12 − 8 lqm)

+
(
m2

t

q2

)3 (8
9

− 16
3
lqm

)

+
(
m2

t

q2

)4 (14
3

− 8 lqm

)

+
(
m2

t

q2

)5 (188
15

− 16 lqm

)

+
(
m2

t

q2

)6 (1516
45

− 112
3
lqm

)}
+ . . . , (9)

Π̄(1),a =
3

16π2

{
55
12

− 4 ζ3 − lqµ

+
m2

t

q2

[
− 107

2
+ 24 ζ3 + 22 lqµ − 6 l2qµ

]

+
(
m2

t

q2

)2 [2
3

− 32 ζ3 − 34 lqm − 12 l2qm
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+ (24 + 24 lqm) lqµ

]

+
(
m2

t

q2

)3 [
− 304

27
− 868

27
lqm − 160

9
l2qm

+ (−12 + 24 lqm) lqµ

]

+
(
m2

t

q2

)4 [5671
216

− 449
9
lqm − 33 l2qm

+ (−40 + 48 lqm) lqµ

]

+
(
m2

t

q2

)5 [1718971
13500

− 77954
675

lqm − 3922
45

l2qm

+ (−118 + 120 lqm) lqµ

]

+
(
m2

t

q2

)6 [9302591
20250

− 193546
675

lqm − 11308
45

l2qm

+
(

−1796
5

+ 336 lqm

)
lqµ

]}
+ . . . , (10)

Π̄(2),a =
3

16π2

{
118379
1944

− 1582
27

ζ3 +
100
9
ζ5

+
(

−343
18

+
124
9
ζ3

)
lqµ +

31
18
l2qµ

+nl

(
−3701

972
+

76
27
ζ3 +

(
11
9

− 8
9
ζ3

)
lqµ

−1
9
l2qµ

)

+
m2

t

q2

[
− 18973

27
+

4612
9

ζ3 + 2 ζ4 − 220 ζ5

+
(

7919
18

− 452
3
ζ3

)
lqµ − 898

9
l2qµ +

110
9
l3qµ

+nl

(
857
27

− 128
9
ζ3 +

(
−151

9
+

16
3
ζ3

)
lqµ

+
32
9
l2qµ − 4

9
l3qµ

)]

+
(
m2

t

q2

)2 [8615
162

− 9140
27

ζ3 − 32
3
ζ4

−3080
27

ζ5 +
16
9
B4

+
(

−10987
27

+
32
3
ζ3

)
lqm

−1430
9

l2qm − 316
9
l3qm

+
(

910
27

+
2528

9
ζ3 +

1094
3

lqm +
316
3
l2qm

)
lqµ

+
(

−220
3

− 316
3
lqm

)
l2qµ

+nl

(
− 149

81
+

416
27

ζ3 +
362
27

lqm

+
40
9
l2qm +

8
9
l3qm

+
(

−116
27

− 64
9
ζ3 − 12 lqm − 8

3
l2qm

)
lqµ

+
(

8
3

+
8
3
lqm

)
l2qµ

)]

+
(
m2

t

q2

)3 [748169
26244

− 18718
81

ζ3 − 64
9
ζ4

−920
27

ζ5 +
32
27
B4

+
(

−639715
1458

− 976
27

ζ3

)
lqm

−66698
243

l2qm − 55064
729

l3qm

+
(

−5342
243

+
98008
243

lqm +
16480

81
l2qm

)
lqµ

+
(

302
3

− 412
3
lqm

)
l2qµ

+nl

(
− 3167

2187
+

224
27

ζ3 +
10630
729

lqm

+
512
81

l2qm +
176
243

l3qm

+
(

− 68
243

− 2816
243

lqm − 320
81

l2qm

)
lqµ

+
(

−4
3

+
8
3
lqm

)
l2qµ

)]

+
(
m2

t

q2

)4 [88895269
209952

− 66964
243

ζ3 − 32
3
ζ4

−560
27

ζ5 +
16
9
B4

+
(

−14315023
17496

+
64
9
ζ3

)
lqm − 422909

729
l2qm

−122420
729

l3qm

+
(

−1400761
1944

+
63863

81
lqm +

1397
3

l2qm

)
lqµ

+
(

3116
9

− 1016
3

lqm

)
l2qµ

+nl

(
− 65785

5832
+

80
9
ζ3 +

12431
486

lqm

+
671
54

l2qm +
38
27
l3qm

+
(

12871
972

− 1618
81

lqm − 22
3
l2qm

)
lqµ

+
(

−40
9

+
16
3
lqm

)
l2qµ

)]
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+
(
m2

t

q2

)5 [1098529906403
524880000

− 4485269
12150

ζ3

−64
3
ζ4 − 1120

27
ζ5 +

32
9
B4

+
(

−1102325809
540000

+
148
3
ζ3

)
lqm

−1318561453
729000

l2qm − 9340049
18225

l3qm

+
(

−374774041
121500

+
12902714

6075
lqm

+
592222

405
l2qm

)
lqµ

+
(

10349
9

− 3020
3

lqm

)
l2qµ

+nl

(
− 124701659

2733750
+

1376
135

ζ3

+
1173494
18225

lqm +
68779
2025

l2qm +
4244
1215

l3qm

+
(

3046471
60750

− 290908
6075

lqm − 7844
405

l2qm

)
lqµ

+
(

−118
9

+
40
3
lqm

)
l2qµ

)]

+
(
m2

t

q2

)6 [2399908800637
262440000

− 366236
1215

ζ3

−448
9
ζ4 − 1120

9
ζ5 +

224
27

B4

+
(

−114901711063
21870000

+
7904
45

ζ3

)
lqm

−4577019727
729000

l2qm − 659557
405

l3qm

+
(

−424502089
36450

+
7360838

1215
lqm

+
395780

81
l2qm

)
lqµ

+
(

35462
9

− 9800
3

lqm

)
l2qµ

+nl

(
− 242108108

1366875
+

5312
405

ζ3 +
114707

675
lqm

+
623728
6075

l2qm +
11896
1215

l3qm

+
(

15364091
91125

− 765092
6075

lqm

−22616
405

l2qm

)
lqµ

+
(

−1796
45

+
112
3
lqm

)
l2qµ

)]}
+ . . . , (11)

Π̄
(2),a
S =

3
16π2

{(
m2

t

q2

)2 [
− 80

3
ζ3 +

320
3
ζ5

]

+
(
m2

t

q2

)3 [380
3

− 64 ζ3 +
(

296
3

− 32 ζ3

)
lqm

+24 l2qm

]

+
(
m2

t

q2

)4 [
− 3271

243
− 416

9
ζ3

+
(

280
27

+ 32 ζ3

)
lqm +

410
27

l2qm − 176
27

l3qm

]

+
(
m2

t

q2

)5 [
− 395921

2916
− 5584

27
ζ3

+
(

4111
54

+
160
3
ζ3

)
lqm +

1340
9

l2qm

−1660
81

l3qm

]

+
(
m2

t

q2

)6 [
− 105441373

101250
− 2420

3
ζ3

+
(

−6044237
40500

+ 112 ζ3

)
lqm +

1177331
1350

l2qm

−15542
135

l3qm

]}
+ . . . , (12)

where mt is the MS top mass and ζ is Riemann’s zeta-
function with the values ζ2 = π2/6, ζ3 ≈ 1.20206, ζ4 =
π4/90 and ζ5 ≈ 1.03693. B4 ≈ −1.76280 is a constant typ-
ical for massive three-loop integrals [14]. The expansion of
the two-loop quantity, Π̄(1),a, can be compared with the
exact result [15]. At order α2

s the constant and quadratic
terms are in agreement with [16,17]. Note that in the non-
singlet contribution mt could be replaced by any other
quark mass. The singlet part, however, gets modified if
both quarks have to be considered as massive and even
vanishes for a degenerate quark doublet. This is also the
reason for the absence of the first two terms in the expan-
sion for m2

t/q
2 → 0: For mt = 0 the top and bottom quark

are trivially degenerate. The contributions to the first or-
der power corrections arise from a simple expansion of the
diagrams for small masses, and according to the structure
of the γ matrices from each triangle at least a factor m2

t

has to come. This means that the m2
t/q

2 corrections from
the diagram with two top triangles cancel against the one
with a top and a bottom triangle which has an overall
factor of two.

Taking the imaginary part of (9-12) and transforming
the result into the on-shell scheme concerning the top mass
[18] leads to (Lms ≡ ln(M2

t /s)):

R(0),a = 3
{

1 − 6
M2

t

s
+ 6

(
M2

t

s

)2

+ 4
(
M2

t

s

)3

+6
(
M2

t

s

)4

+ 12
(
M2

t

s

)5

+28
(
M2

t

s

)6}
+ . . . , (13)
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Fig. 2. R
(2),a
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tions of x = 2Mt/
√

s at µ2 = M2
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higher order terms in (M2
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R(1),a = 3
{

3
4

+
M2

t

s

(
−9

2
− 9Lms

)

+
(
M2

t

s

)2 (
−33

2
+ 18Lms

)

+
(
M2

t

s

)3 (82
9

+
28
3
Lms

)

+
(
M2

t

s

)4 (233
12

+
45
2
Lms

)

+
(
M2

t

s

)5 (12401
225

+
739
15

Lms

)

+
(
M2

t

s

)6 (66803
450

+
1906
15

Lms

)}
+ . . . , (14)

R(2),a = 3
{

343
24

− 31
3
ζ3 + nl

(
−11

12
+

2
3
ζ3

)

+
M2

t

s

[
− 937

6
+ (79 + 8 ln 2) ζ2 + 111 ζ3

−613
6
Lms +

7
2
L2

ms

+nl

(
20
3

− 6 ζ2 − 4 ζ3 +
13
3
Lms − L2

ms

)]

+
(
M2

t

s

)2 [
39 + (−206 − 16 ln 2) ζ2 − 644

3
ζ3

+
255
2
Lms + 17L2

ms

+nl

(
5 + 12 ζ2 +

16
3
ζ3 − 11Lms + 2L2

ms

)]

+
(
M2

t

s

)3 [
− 236639

1944
+
(

−7318
81

− 16 ln 2
)
ζ2

+
280
9
ζ3 +

640
3
Lms − 889

81
L2

ms

+nl

(
269
243

+
148
27

ζ2 − 638
81

Lms +
10
3
L2

ms

)]

+
(
M2

t

s

)4 [28244
729

+
(

−45389
162

− 32 ln 2
)
ζ2

+
8
3
ζ3 +

432461
972

Lms +
4727
324

L2
ms

+nl

(
−7061

1296
+

40
3
ζ2 − 1477

108
Lms
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+
19
3
L2

ms

)]

+
(
M2

t

s

)5 [1248859307
2160000

+
(

−2008559
4050

− 80 ln 2
)
ζ2 − 17 ζ3

+
550105787

486000
Lms − 337981

8100
L2

ms

+nl

(
−6496853

243000
+

3856
135

ζ2 − 114617
4050

Lms

+
50
3
L2

ms

)]

+
(
M2

t

s

)6 [74282645263
29160000

+
(

−21379
30

− 224 ln 2
)
ζ2

−1136
15

ζ3 +
1145970713

486000
Lms − 225373

540
L2

ms

+nl

(
−2680259

30375
+

9824
135

ζ2 − 13901
225

Lms

+
1292
27

L2
ms

)]}
+ . . . , (15)

R
(2),a
S = 3

{(
M2

t

q2

)3

(−74 + 24 ζ3 + 36Lms)

+
(
M2

t

q2

)4 (
−70

9
− 88

3
ζ2 − 24 ζ3

+
205
9
Lms +

44
3
L2

ms

)

+
(
M2

t

q2

)5 (
−4111

72
− 830

9
ζ2 − 40 ζ3

+
670
3
Lms +

415
9
L2

ms

)

+
(
M2

t

q2

)6 (6044237
54000

− 7771
15

ζ2 − 84 ζ3

+
1177331

900
Lms +

7771
30

L2
ms

)}
+ . . . , (16)

where µ2 = s is chosen. Note, that the quartic corrections
of Π(2),a

S have no imaginary parts so that R(2),a
S actually

starts at order (M2
t /s)

3. An important check of our re-
sult is provided by the successful comparison of the terms
proportional to nl with the expansion of the exact ana-
lytical expression [19]. The quartic terms for the proper
sum R(2),a(s) are also available in the literature [20] and
complete agreement was found.

For completeness we list the results from the double-
triangle diagrams containing cuts from the b quark only
[21]:

R
(2),a
Sb (s) = 3

{
− 15

8
+ ζ2 +

M2
t

s

[
2 − 10ζ2 − 6Lms + L2

ms

]

Table 1. Numerical values for the contributions of O(αi
s),

R
(i)
t , to the normalized cross section Rt. The values for α

(6)
s (s)

are based on α
(5)
s (M2

Z) = 0.118. The scale µ2 = s has been
adopted. Also the values of x = 2Mt/

√
s are shown

√
s (GeV) x α

(6)
s (s) R

(0)
t CF R

(1)
t R

(2)
t Rt(s)

500 0.70 0.095 1.419 6.021 29.902 1.629

1000 0.35 0.088 1.732 2.842 6.016 1.816

1500 0.23 0.085 1.771 2.291 3.709 1.836

2000 0.18 0.083 1.784 2.091 3.044 1.841

+
(
M2

t

s

)2 [
−39

4
− ζ2 + 8ζ3

+
(

15
2

− 2ζ2

)
Lms +

1
2
L2

ms +
1
3
L3

ms

]

+
(
M2

t

s

)3 [91
9

− 4ζ2 +
8
3
Lms + 2L2

ms

]

+
(
M2

t

s

)4 [1907
144

− 5ζ2 +
95
12
Lms +

5
2
L2

ms

]

+
(
M2

t

s

)5 [75803
2700

− 28
3
ζ2

+
826
45

Lms +
14
3
L2

ms

]

+
(
M2

t

s

)6 [31073
450

− 21ζ2

+
917
20

Lms +
21
2
L2

ms

]}
. (17)

This contribution has to be subtracted from R
(2),a
S . Note

that the cut arising from two gluons is zero according to
the Landau-Yang-Theorem [22]. In Fig. 2 the terms for
the five different contributions are plotted against x =
2Mt/

√
s including successively higher orders in M2

t /s. For
R

(2),a
A and R

(2),a
NA a comparison with a recently evaluated

semi-analytical result (narrow dots) [17] is possible and
agreement up to x ≈ 0.8 is found. The light fermion con-
tribution, R(2),a

l , may be compared with exact results [19]
(narrow dots) and also shows agreement up to x ≈ 0.8.
Concerning R

(2),a
F and R

(2),a
S the situation is less satis-

factory. It seems that there is reasonable convergence up
to x ≈ 0.7 which is also motivated by the behaviour of
the vector case where analytical results for x > 0.5 are
available (see [4]). However, for x > 0.7 the behaviour
of the curve including all known power correction terms
(solid line) indicates that close to x = 1 the convergence
fails to work. The reason presumably is connected to the
four particle cut starting at x = 0.5. Although R(2),a

A and
R

(2),a
NA also exhibit a four particle cut it seems to be some-

how less dominant for these contributions. In Fig. 2 also
the contribution R

(2),a
Sb is shown. Here, already the curve

including power corrections up to order (M2
t /s)

2 is prac-
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tically indistinguishable from the exact result. Note that
only the difference of the two plots in the bottom line of
Fig. 2 enters Rt(s).

Recalling that the first seven terms for Rv(s) approx-
imate the exact result up to x ≈ 0.7 [4] we are now pre-
pared to present predictions for Rt valid up to O(α2

s) for√
s ∼> 500 GeV which corresponds to x ∼< 0.7. Therefore

we insert the isospin and charge quantum numbers into
(5) and choose nl = 5, s2Θ = 0.2315, α(5)

s (M2
Z) = 0.118,

MZ = 91.187 GeV and Mt = 175 GeV. Then the expan-
sion of Rt(s) looks as follows:

Rt(s) = R
(0)
t (s) +

α
(6)
s (s)
π

CF R
(1)
t (s)

+

(
α

(6)
s (s)
π

)2

R
(2)
t (s) (18)

In Tab. 1 the coefficients R(i)
t are listed for different val-

ues of the center of mass energy
√
s. One observes that

for
√
s = 500 GeV, which is a proposed option for the

NLC, the O(α2
s) QCD corrections amount to ≈ 2%. For

higher values of the center of mass energy these terms get
less important. In Fig. 3 the normalized cross section Rt

is plotted against
√
s. The contributions from the vector

and axial-vector part are also displayed separately. Rt(s)
is clearly dominated by the vector contribution which is
mainly due to the fact that in (5) the couplings to Rv

are larger by roughly a factor of four as compared to Ra.
Another reason is that the Born cross section R(0),v is al-
ways larger than R(0),a. This is not true for the O(αs) and
O(α2

s) terms. Here the axial-vector contribution exceeds
the vector part for sufficiently large values of

√
s and ap-

proaches it from above as
√
s goes to infinity, where both

Rv and Ra are identical. In Fig. 4 this is demonstrated
at order α2

s. For this reason at energies above roughly√
s = 600 GeV the three-loop vector and axial-vector con-

tributions to Rt are comparable. At lower values of the
energy the vector part is still larger than the axial-vector
part as a consequence of the more singular threshold be-
haviour of Rv (Fig. 4). For the sake of completeness we
note that the contribution from the singlet diagram which
is absent in the vector case is smaller by at least a factor
100 as compared to the non-singlet case.

To conclude, the large momentum procedure has been
applied to the axial-vector polarization function and terms
up to order (M2

t /q
2)6 have been determined. The imagi-

nary part in combination with the result recently obtained
for the vector case was used to predict the production of
top quarks at future e+e− colliders up to O(α2

s).
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17. K.G. Chetyrkin, J.H. Kühn and M. Steinhauser, Nucl.
Phys. B 505 (1997) 40

18. N. Gray, D.J. Broadhurst, W. Grafe and K. Schilcher, Z.
Phys. C 48 (1990) 673

19. A.H. Hoang and T. Teubner, Report Nos. DTP/97/68,
UCSD/PHT 97-16 and hep-ph/9707496

20. K.G. Chetyrkin and J.H. Kühn, Nucl. Phys. B 432 (1994)
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